
Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

Modelling of Wave Propagation by Implementing the
Transmission Line Matrix in C++

Tommy Hinks � tomhi761@student.liu.se
Johan Höglund � johho927@student.liu.se

Linköpings Universitet � ITN
Norrköping 2004-01-18

Abstract
This report describes basic Transmission Line Matrix theory, along with guidelines on how to implement TLM
in C++; source code is included as an appendix. As can be seen in the source code, class-based implementation
of the TLM method is a powerful approach, due to flexibility and straight-forward programming. A brief
quantitative study of diffraction effects is discussed, with the conclusion that smaller slit width and larger
wavelength increase diffraction effects. Also mentioned briefly is pressure distribution in a room. The visual
effects of the application are good enough to appreciate acoustic wave propagation, but not adequate for
scientific studies.

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

Index

INTRODUCTION .. 4
PURPOSE ... 4
METHODS.. 4
REFERENCES ... 4

MODELLING ROOM ACOUSTICS USING THE TRANSMISSION LINE METHOD IN C++............... 5
BACKGROUND THEORY OF THE TLM.. 5
IMPLEMENTING THE TLM METHOD IN C++... 6
DEALING WITH BOUNDARIES .. 6
DIFFRACTION EFFECTS ... 6
PRESSURE DISTRIBUTION IN THE ROOM ... 6

RESULTS ... 7

DISCUSSION.. 10

CONCLUSION... 11

REFERENCES ... 12

APPENDIX 1 SOURCE CODE.. 13

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 4

Introduction
This section outlines the purpose of this project, identifies the methods that have been used and comments on
where references have been sought.

Purpose
The main purpose of this report is to explain how sound wave propagation is modelled in a room by
implementing the Transmission Line Matrix (TLM) method in C++. The application is used to study diffraction
effects that occur when sound waves pass through a single slit of varying size. Finally there is a short general
discussion about pressure distribution in the room.

Methods
The mathematical method used in the application is the TLM method, which will be further explained and
validated later on. The application is class-based in order to make the source code easier to understand and to
make updates and changes to the application simpler. For discussing diffraction effects screenshots from the
application are taken. These are then edited with standard image editing programs to highlight what is
interesting. The graphs appearing in this report have been produced by exporting values from the application to a
text file, and then importing the text file as data into Microsoft Excel.

References
A number inside brackets ([x]) means that the preceding statement has a connection to the corresponding
reference at the end of this report.

References have been sought mainly on the Internet and in literature from past courses. Articles found on the
Internet are published work.

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 5

Modelling room acoustics using the transmission line
method in C++
This section gives a brief introduction to the TLM method and explains how it was implemented in C++. After
that data from the application is used as material to discuss diffraction effects and pressure distribution in the
room.

Background theory of the TLM
The TLM method is a numerical method used to simulate wave propagation. TLM is based on Huygens�
Principle, which is in modern terms is [1]:

 Each point on a wave front acts as a source of secondary wavelets. At a later

time, the envelope of the leading edges of the wavelets forms the new wave front.

TLM was originally designed to model electromagnetic wave propagation, but can be used to model any
phenomena that obeys Huygens� Principle, such as sound waves [1]. Figure 1 shows why the TLM method is a
good numerical approximation of wave propagation according Huygens� Principle. At a time, t1 = t0+∆t, the
wave front has travelled a distance d=c∆t from the source in all directions. The TLM method�s �wave front�
only consists of four points at this stage and is not yet a very good approximation. At the next time instant, t2 =
t1+∆t, the wave front has travelled a distance 2d from the source. The TLM method�s �wave front� has also
travelled further away from the source and is beginning to look more and more spherical. One can easily imagine
the next few iterations of the TLM method and see that the two different wave fronts will grow more and more
similar.

The TLM method makes use of an array
of nodes, between which, in acoustic
applications, acoustic pressure (or
acoustic potential) is exchanged. In two
dimensions a rectangular grid of nodes is
setup.

If the medium in which the waves are
propagating is homogeneous, has the
same properties everywhere, one can
assume that neighbouring nodes will
spread pressure to each other in the same
way1. This makes it possible to outline a
reusable method for one node, which can
then be used on all nodes.

The scattering principle used in our
application assumes that the medium in
the room is homogeneous and that the
medium is non-viscos, so that there is no
resistance when transmitting pressure.
These assumptions have been made by
others before us so a well-known
scattering model exists [2] [3]. Figure 2
shows the different parts of a node and
equation (1) explains how pressure is
transmitted between nodes.

1 In our application the walls of the room are also represented as nodes and do not scatter pressure the same way
as the nodes representing the medium in the room.

Figure 1. TLM wave propagation compared to Huygens�
Principle.

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 6

(1)

In

t

Out

t V
V
V
V

V
V
V
V

−
−

−
−

=

+ 4

3

2

1

14

3

2

1

1111
1111
1111
1111

2
1

The above equation describes how a node scatters incoming pressure
(the right hand vector). The pressure that arrived at a node at time t, is
transmitted to neighbouring nodes at t+1. As t increases, as the
application is run, wave propagation is modelled in the room.

Implementing the TLM method in C++
The implementation of the grid of nodes and the wave propagation was
made in C++ together with OpenGL, to make visualization more effective. The application is divided into
several classes to make it more efficient and easier to adjust as work progresses and gets more complex. The top
class is Room, which in some way contains all the other classes. Most importantly an instance of the class Room
contains the grid of nodes that is used in the TLM method. Each node is represented on the screen as a two by
two pixel square that has a colour that depends on the amount of pressure currently present in the node. Every
node has two vectors that represent the flow of pressure between the nodes. One vector to keep track of
incoming pressure and one to keep track of outgoing pressure. The program uses the TLM methods to distribute
all the pressure to the neighbouring nodes. First it scatters the pressure between the nodes, and then it collects the
incoming pressure, summarizes it and sets the new colour of the nodes. These four steps are repeated as long as
the application is running.

A sinusoidal source was introduced at a node in the room, adding pressure to the incoming vector of this node at
each time instant. Without a source of some kind there is no pressure to be scattered between the nodes.

Virtual microphones in our application simply listen to a certain node and record the pressure there for as long as
the application is running. This recording is output to a text file, where a pressure is given for each time instant.
The pressure is measured precisely after the incoming pressure for the node is summarized.

The source code for the application is available in Appendix 1.

Dealing with boundaries
The walls of the room were modelled almost like regular nodes, with some crucial differences. A wall node has a
static colour and the incoming pressure is reflected only in the same direction as it came from. Every instance of
the class Room has a wall coefficient which determines how much of the incoming pressure is to be reflected
back into the room. The wall coefficient varies between zero and one, a value of one makes the room an echo
chamber and a value of zero means that the walls don�t reflect any pressure at all.

Diffraction effects
Diffraction occurs when waves travel trough an opening that is relatively smaller then the wavelength [1]. To
create these effects in our application, an extra wall was added to the room dividing the room in two. This wall
had an opening to allow waves to pass through it. The angle of diffraction was measured during a couple of
experiments to find a relation between the angle of diffraction, the size of the opening and the wavelength. See
figure 4-7.

Pressure distribution in the room
Several recordings were made with a virtual microphone to study the pressure distribution in the room. The
microphone was placed at two randomly selected nodes and also on five nodes along a line perpendicular to the
normal of the opening. See figure 8-9.

Figure 2. A node

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 7

Results
The application shows how waves propagate in a room. It shows pressure at different points at different times.
The application also handles reflecting boundaries, in our case walls. Any kind of source could be implemented
and run; the sources are not limited to being sinusoidal. Figure 3 shows what the application produces when
running.

Diffraction effects were studied by using screenshots from the application. The source was placed at position
(40, 75). The diffraction angle was measured after the same amount of time had passed and is shown in the four
figures below. The amplitude of the source has been increased a lot in order to see the diffraction effects better,
giving a rather strange look to the region around the source. More screenshots were taken and the results
recorded, but those screenshots are not shown here.

Figure 3. Final view of the application

Figure 4. Diffraction effects studied by varying width
of the slit. Slit width = 4 units. Angle of diffraction =
63 deg.

Figure 5. Diffraction effects studied by varying width
of the slit. Slit width = 8 units. Angle of diffraction =
55 deg.

Figure 7. Diffraction effects studied by varying
frequency (wavelength). Frequency = 6 Hz. Angle of
diffraction = 53 deg.

Figure 6. Diffraction effects studied by varying
frequency (wavelength). Frequency = 4 Hz. Angle of
diffraction = 64 deg.

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 8

The total results of the diffraction study are shown in the table below.

Frequency
(Hz)

Angle of diffraction (deg) Slit width
(units)

2 70 6
3 65 6
4 64 6
5 60 6
6 56 6
7 48 6
8 44 6

5 65 2
5 64 4
5 62 6
5 58 8
5 55 10
5 53 12

Table 1. Total results of diffraction study.

Pressure distribution in the room was briefly studied by using virtual microphones placed at different positions in
the room. The source was placed at position (50, 50). The graphs obtained are shown in figures 8-9.

Nodes on line perpendicular to slit normal

0

0,05

0,1

0,15

0,2

0,25

0,3

0,35

0 5 10 15 20

Time

Pr
es

su
re

Node (100,25)
Node (100,50)
Node (100,75)
Node (100,100)
Node (100,125)

Figure 8. Pressure at nodes on a line perpendicular to the normal vector of the opening. Five nodes ploted in the
same diagram.

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 9

Arbitrary

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0 5 10 15 20

Time

Pr
es

su
re

Node (20,130)
Node (160,75)

Figure 9. Pressure at two arbitrary nodes in the room.

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 10

Discussion
Our method has limitations. One of these is the fact that the application becomes computationally heavy when
the number of nodes becomes large. This means that it would take a long time to model large rooms. Another
aspect of the same problem is that the application cannot simulate the speed of wave propagation. This is simply
because the application runs as fast as possible (which varies from computer to computer), meaning that the
wave front moves with different velocities on different machines. The colour representation is not always correct
due to the fact that there is a maximum shade of white that can be produced by the monitor. This means nodes
with the same colour may in fact have different pressure.

The way the source code is built makes it easy to add new features, such as multiple or moving sources, or extra
walls. It is also easy to change the colour representation to suit specific purposes.

The results of the diffraction study are presented in figures 4-7 and table 1. What can be noticed are two things:
the diffraction angle increases as the slit becomes smaller2, the diffraction angle increases as the frequency
(wavelength) decreases3. The measurements that were made did not show more than trends. It was too difficult
to measure the diffraction angle from the screenshot, even after the amplitude was greatly increased.

Figure 8 shows pressure distribution along a line perpendicular to the slit normal. The nodes closest to the source
(green and yellow lines) are reached by the wave front first. The fact that they don�t rise to full amplitude
directly is natural, since the top of the wave hasn�t reached the node yet. In terms of the TLM method this is
modelled by the fact that these nodes are not receiving pressure from all their surrounding nodes, but merely
from one or two neighbours. When the wave passes over the node, it receives pressure from all surrounding
nodes and reaches the full amplitude of the wave. After a while wall reflections, as well as direct sound, reach
some of the nodes in figure 8. By studying the black line, one can see that just before time = 20 the pressure level
rises. This would never happen if there were no walls.

The blue curve in figure 9 shows a microphone placed in the top left corner. Almost immediately after the direct
sound has reached the node, the reflections from the walls hit the node, hence the pressure spikes. The pink line
has lower pressure amplitude because it is further away from the source. The pink line doesn�t make the same
kind of pressure leap as the blue line. This is because it is further away, and is not hit by any reflections.

2 Constant frequency (wavelength).
3 Constant slit width. As frequency decreases, wavelength increases.

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 11

Conclusion
The application could be used to model simple environments, where details can be ignored, and make
quantitative studies of how acoustic waves behave. As was mentioned in the discussion it is hard to make
qualitative studies of physical phenomena using the application. It might be possible to enhance the application,
and run it on a powerful computer, to obtain high-resolution images, with more detailed information. The TLM
method works well, but without optimized algorithms and super computers it can be computationally heavy and
difficult to put into practical use.

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 12

References
A list of references used in this report.

[1] Benson, Harris (1995). University Physics. Wiley. United States.

[2] Mansour, Ahmadian (2001). Transmission Line Matrix (TLM) modelling of
medical ultrasound. Accessed online 2004-02-20. <http://oldeee.see.ed.ac.uk/SaS/Thesis/Ma/thesis.pdf>.
University of Edinburgh.

[3] Razvan, Ciocan (2003). Applications of Transmission Line Matrix Method For NDT. Accessed online
2004-02-02. <http://www.ndt.net/article/ecndt02/319/319.htm>. University of Akron.

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 13

Appendix 1 Source Code
#include <windows.h> // Header File For Windows

#include <iostream>
#include <fstream>

#include <stdarg.h> // Header File For Variable Argument Routines
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <math.h>

#include <gl\gl.h> // Header File For The OpenGL32 Library
#include <gl\glu.h> // Header File For The GLu32 Library
#include <gl\glaux.h> // Header File For The Glaux Library

using namespace std;

HDC hDC=NULL; // Private GDI Device Context
HGLRC hRC=NULL; // Permanent Rendering Context
HWND hWnd=NULL; // Holds Our Window Handle
HINSTANCE hInstance; // Holds The Instance Of The Application

bool keys[256]; // Array Used For The Keyboard Routine
bool active=TRUE; // Window Active Flag Set To TRUE By Default
bool fullscreen=false; // Fullscreen Flag Set To Fullscreen Mode By Default

bool bKeyUp, bKeyDown; // Determines if a key is pressed

#define RX 200 // Room dimensions
#define RY 150

GLuint base; // Base Display List For The Font

GLvoid glPrint(const char *fmt, ...) // Custom GL "Print" Routine
{
 char text[256]; // Holds Our String
 va_list ap; // Pointer To List Of Arguments

 if (fmt == NULL) // If There's No Text
 return; // Do Nothing

 va_start(ap, fmt); // Parses The String For Variables
 vsprintf(text, fmt, ap); // And Converts Symbols To Actual Numbers
 va_end(ap); // Results Are Stored In Text

 glPushAttrib(GL_LIST_BIT); // Pushes The Display List Bits
 glListBase(base - 32); // Sets The Base Character to 32
 glCallLists(strlen(text), GL_UNSIGNED_BYTE, text); // Draws The Display List Text
 glPopAttrib(); // Pops The Display List Bits
}

GLvoid BuildFont() // Build Our Bitmap Font
{
 HFONT font; // Windows Font ID
 HFONT oldfont; // Used For Good House Keeping

 base = glGenLists(96); // Storage For 96 Characters

 font = CreateFont(-12, // Height Of Font
 0, // Width Of Font
 0, // Angle Of Escapement
 0, // Orientation Angle
 FW_BOLD, // Font Weight
 FALSE, // Italic
 FALSE, // Underline
 FALSE, // Strikeout
 ANSI_CHARSET, // Character Set Identifier

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 14

 OUT_TT_PRECIS, // Output Precision
 CLIP_DEFAULT_PRECIS, // Clipping Precision
 ANTIALIASED_QUALITY, // Output Quality
 FF_DONTCARE|DEFAULT_PITCH, // Family And Pitch
 "Arial"); // Font Name

 oldfont = (HFONT)SelectObject(hDC, font); // Selects The Font We Want
 wglUseFontBitmaps(hDC, 32, 96, base); // Builds 96 Characters Starting At Character 32
 SelectObject(hDC, oldfont); // Selects The Font We Want
 DeleteObject(font); // Delete The Font
}

GLvoid KillFont(GLvoid) // Delete The Font From Memory
{
 glDeleteLists(base,256); // Delete All 256 Display Lists
}

class Vector4 { // Vector class

public:

 Vector4::Vector4()
 {
 return;
 };

 Vector4::Vector4(float tx, float ty, float tz, float tw)
 {
 v1 = tx;
 v2 = ty;
 v3 = tz;
 v4 = tw;
 return;
 };

 float Vector4::getV1() { return (v1); };
 float Vector4::getV2() { return (v2); };
 float Vector4::getV3() { return (v3); };
 float Vector4::getV4() { return (v4); };

 void Vector4::setV1(float t) { v1 = t; };
 void Vector4::setV2(float t) { v2 = t; };
 void Vector4::setV3(float t) { v3 = t; };
 void Vector4::setV4(float t) { v4 = t; };

private:
 float v1,v2,v3,v4;
};

class Source { // Source class
public:
 Source::Source(int tx, int ty, float tamp, float tfreq) // Creates a source
 {
 x = tx;
 y = ty;
 amp = tamp;
 freq = tfreq;
 return;
 };

 void Source::setAmp(float t) { amp = t; }; // Set/get the different values of a source
 void Source::setFreq(float t) { freq = t; };
 void Source::setX(int t) { x = t; };
 void Source::setY(int t) { y = t; };

 int Source::getX() { return (x); };
 int Source::getY() { return (y); };
 float Source::getFreq() { return (freq); };
 float Source::getAmp() { return (amp); };

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 15

private:
 int x, y;
 float amp, freq;
};

class Node { // Node Class
public:

 Node::Node() // Creates a node with standard wall coefficient
 {
 in.setV1(0.0f);
 in.setV2(0.0f);
 in.setV3(0.0f);
 in.setV4(0.0f);

 out.setV1(0.0f);
 out.setV2(0.0f);
 out.setV3(0.0f);
 out.setV4(0.0f);

 setR(0.3f);
 setG(0.3f);
 setB(0.3f);

 return;
 };

 Node::Node(float w) // Creates a node
 {
 wall = w;

 in.setV1(0.0f);
 in.setV2(0.0f);
 in.setV3(0.0f);
 in.setV4(0.0f);

 out.setV1(0.0f);
 out.setV2(0.0f);
 out.setV3(0.0f);
 out.setV4(0.0f);

 setR(0.7f);
 setG(0.7f);
 setB(0.7f);

 return;
 };

 float Node::getR() { return (r); }; // Read and set the color coefficients
 float Node::getG() { return (g); };
 float Node::getB() { return (b); };

 void Node::setR(float t) { r = t; };
 void Node::setG(float t) { g = t; };
 void Node::setB(float t) { b = t; };

 Vector4 Node::getIn() {return (in); }; // Read the energy vectors
 Vector4 Node::getOut() {return (out); };

 void Node::setW(float t) { wall = t; }; // Set and receiv the wall coefficient
 float Node::getW() { return (wall); };

 void Node::setIn(Vector4 t) { // Set the enrgy vectors
 in.setV1(t.getV1());
 in.setV2(t.getV2());
 in.setV3(t.getV3());
 in.setV4(t.getV4());
 }

 void Node::setOut(Vector4 t) {

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 16

 out.setV1(t.getV1());
 out.setV2(t.getV2());
 out.setV3(t.getV3());
 out.setV4(t.getV4());
 }

 float Node::sumIn() { return (in.getV1() + in.getV2() + in.getV3() + in.getV4()); }; // Sumarizes the total engry
presint in a node

 void Node::scatter() { // Scatters the energy from a node to another

 if(this->getW()>0) {
 this->out.setV1(this->in.getV1() * this->getW());
 this->out.setV2(this->in.getV2() * this->getW());
 this->out.setV3(this->in.getV3() * this->getW());
 this->out.setV4(this->in.getV4() * this->getW());
 }
 else
 {
 this->out.setV1(0.5f*(-this->in.getV1() + this->in.getV2() + this->in.getV3() + this->in.getV4()));
 this->out.setV2(0.5f*(this->in.getV1() - this->in.getV2() + this->in.getV3() + this->in.getV4()));
 this->out.setV3(0.5f*(this->in.getV1() + this->in.getV2() - this->in.getV3() + this->in.getV4()));
 this->out.setV4(0.5f*(this->in.getV1() + this->in.getV2() + this->in.getV3() - this->in.getV4()));

 }

 this->in.setV1(0.0f);
 this->in.setV2(0.0f);
 this->in.setV3(0.0f);
 this->in.setV4(0.0f);
 };

private:
 Vector4 in, out; // Vectors for the energy
 float r, g, b; // The colour of a node
 float wall; // Wall Coefficient. If 0 the node is not a wall, if 1 the node is a perfectly reflecting wall

};

class Room { // Room class
public:

 Room::Room(float tc, float tw, float tb) { // Creates a room with a grid of nodes
 c = tc;
 time = 0;
 tb=tb/2;
 for(int i=0; i<RX; i++)
 {
 for(int j=0; j<RY; j++)
 {
 if(i<1 || i>RX-2 || j<1 || j>RY-2) // Creates the nodes and set the edge nodes as walls
 grid[i][j] = Node(tw);
 else
 grid[i][j] = Node(0.0f);

 if(i==130 && (j<(75-tb) || j>(75+tb))) // Adds the wall between the rooms
 grid[i][j].setW(tw);
 }
 }

 return;
 };

 void Room::setC(float t) { c = t; }; // Set/get the values of a room

 float Room::getTime() { return (time); };

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 17

 void Room::setTime(float t) { time = t; };

 float Room::getFps() { return (fps); };

 void Room::drawRoom() { // Draws the room and sets the colours

 for(int x=0; x < RX; x++)
 {
 for(int y=0; y < RY; y++)
 {
 if(grid[x][y].getW()>0)
 glColor3f(0.0f, 0.0f, 0.0f); // Wall colour

 else
 glColor3f(grid[x][y].getR(),grid[x][y].getG(),grid[x][y].getB()); // Regular node color

 glBegin(GL_QUADS);
 glVertex2i(2*x, 2*y); // Left And Up 1 Unit (Top Left)
 glVertex2i(2*(x+1), 2*y); // Right And Up 1 Unit (Top Right)
 glVertex2i(2*(x+1),2*(y+1)); // Right And Down One Unit (Bottom Right)
 glVertex2i(2*x,2*(y+1)); // Left And Down One Unit (Bottom Left)
 glEnd();
 }
 }

 };

 void Room::collect() { // Collects the incomming energy

 for(int i=0; i<RX; i++)
 {
 for(int j=0; j<RY; j++)
 {
 if(grid[i][j].getOut().getV1() > 0)
 grid[i][j-1].setIn(Vector4(grid[i][j-1].getIn().getV1(), grid[i][j-1].getIn().getV2(),
grid[i][j].getOut().getV1(), grid[i][j-1].getIn().getV4()));

 if(grid[i][j].getOut().getV2() > 0)
 grid[i-1][j].setIn(Vector4(grid[i-1][j].getIn().getV1(), grid[i-1][j].getIn().getV2(), grid[i-
1][j].getIn().getV3(), grid[i][j].getOut().getV2()));

 if(grid[i][j].getOut().getV3() > 0)
 grid[i][j+1].setIn(Vector4(grid[i][j].getOut().getV3(), grid[i][j+1].getIn().getV2(),
grid[i][j+1].getIn().getV3(), grid[i][j+1].getIn().getV4()));

 if(grid[i][j].getOut().getV4() > 0)
 grid[i+1][j].setIn(Vector4(grid[i+1][j].getIn().getV1(), grid[i][j].getOut().getV4(),
grid[i+1][j].getIn().getV3(), grid[i+1][j].getIn().getV4()));

 grid[i][j].setOut(Vector4(0.0f, 0.0f, 0.0f, 0.0f));

 }
 }

 };

 void Room::scatterNodes() { // Loops through the nodes and calls scatter() in the node class

 for(int i=0; i<RX; i++)
 {
 for(int j=0; j<RY; j++)
 {
 grid[i][j].scatter();
 }
 }

 };

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 18

 void Room::setColors() { // Determines the correct color depending on the total energy in a node

 for(int i=0; i<RX; i++)
 {
 for(int j=0; j<RY; j++)
 {
 float sum = grid[i][j].sumIn();
 grid[i][j].setR(0.3f + sum);
 grid[i][j].setG(0.3f + sum);
 grid[i][j].setB(0.3f + sum);

 }
 }

 };

 void Room::addSource(Source t, float time) // Adds the energy from a source to the receiving node
 {
 grid[t.getX()][t.getY()].setIn(Vector4(grid[t.getX()][t.getY()].getIn().getV1() + (t.getAmp()*sinf(t.getFreq()*time))/4,
grid[t.getX()][t.getY()].getIn().getV2() + (t.getAmp()*sinf(t.getFreq()*time))/4, grid[t.getX()][t.getY()].getIn().getV3() +
(t.getAmp()*sinf(t.getFreq()*time))/4, grid[t.getX()][t.getY()].getIn().getV4() + (t.getAmp()*sinf(t.getFreq()*time))/4));

 };

 void Room::setWallUp() // Increases the wall coefficient
 {
 for(int i=0; i<RX; i++)
 {
 for(int j=0; j<RY; j++)
 {
 if(grid[i][j].getW()>0 && grid[i][j].getW()<1)
 grid[i][j].setW(grid[i][j].getW()+0.1f);
 }
 }
 };

 void Room::setWallDown() // Decreases the wall coefficient
 {
 for(int i=0; i<RX; i++)
 {
 for(int j=0; j<RY; j++)
 {
 if(grid[i][j].getW()>0.1f)
 grid[i][j].setW(grid[i][j].getW()-0.1f);
 }
 }
 };

 void Room::microphone(int x, int y, Source t) // Write the results of the microphone to a textfile
 {

 ofstream debug("microphone.txt", ios::app);

 //debug << getTime() << ":" << grid[x][y].sumIn() << "\n";

 debug << getTime() << ":" << t.getAmp()*sinf(t.getFreq()*time)/4 << "\n";

 debug.close();

 };

 void Room::calculateFrameRate() // Calculates the frame rate
 {

 static float framesPerSecond = 0.0f; // This will store our fps
 static float lastTime = 0.0f; // This will hold the time from the last frame

 float currentTime = GetTickCount() * 0.001f;

 ++framesPerSecond;

 if(currentTime - lastTime > 1.0f)
 {

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 19

 lastTime = currentTime;
 fps = framesPerSecond;
 framesPerSecond = 0;

 }
 };

 void Room::drawInfo(Source s) { // Draws the info on the screen

 glColor3f(1.0f, 1.0f, 1.0f);
 glTranslatef(0.0f,0.0f,-1.0f);

 glRasterPos2f(420.0f, 290.0f);
 glPrint("FPS %7.2f", fps); // Print GL Text To The Screen

 glRasterPos2f(420.0f, 270.0f);
 glPrint("Time %7.2f", time);

 glRasterPos2f(420.0f, 250.0f);
 glPrint("Walls %7.2f", grid[0][0].getW()); // Print GL Text To The Screen

 glRasterPos2f(420.0f, 230.0f);
 glPrint("w %7.2f", s.getFreq()); // Print GL Text To The Screen

 glRasterPos2f(420.0f, 210.0f);
 glPrint("Amp %7.2f", s.getAmp()); // Print GL Text To The Screen
 };

private:
 float c, fps; // Speed of sound
 float time; // The total running time
 Node grid[RX][RY]; // Grid of nodes
};

Room r(340.0f, 1.0f, 20.0f); // Creates a room
Source s(40, 75, 8, 5); // Adds a Source

LRESULT CALLBACK WndProc(HWND, UINT, WPARAM, LPARAM); // Declaration For WndProc

GLvoid ReSizeGLScene(GLsizei width, GLsizei height) // Resize And Initialize The GL Window
{
 if (height==0) // Prevent A Divide By Zero By
 {
 height=1; // Making Height Equal One
 }

 glViewport(0,0,width,height); // Reset The Current Viewport

 glMatrixMode(GL_PROJECTION); // Select The Projection Matrix
 glLoadIdentity(); // Reset The Projection Matrix

 gluOrtho2D(0.0,(GLdouble) 540,0.0,(GLdouble) 320);

 glMatrixMode(GL_MODELVIEW); // Select The Modelview Matrix
 glLoadIdentity(); // Reset The Modelview Matrix
}

int InitGL(GLvoid) // All Setup For OpenGL Goes Here
{
 glShadeModel(GL_SMOOTH); // Enable Smooth Shading
 glClearColor(0.5f, 0.5f, 0.5f, 0.5f); // Black Background

 BuildFont();

 return TRUE;
}

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 20

int DrawGLScene(GLvoid) // Here's Where We Do All The Drawing
{

 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT); // Clear Screen And Depth Buffer

 glLoadIdentity(); // Resets the view matrix
 glTranslatef(10.0f, 10.0f, 0.0f); // Moves the view

 r.setTime(r.getTime() + 0.1f); // Increases the time
 r.addSource(s, r.getTime()); // Adds the source

 r.scatterNodes(); // Scatters the pressure
 r.collect(); // Collects the pressure
 r.setColors(); // Set the color

 //r.microphone(49, 50, s); // Add a microphone at a node

 r.drawRoom(); // Draw the room

 r.calculateFrameRate(); // Calculate the frame rate
 r.drawInfo(s); // Draw the info on the screen

 return TRUE; // Keep Going
}

 //STANDARD WINDOW CODE, not implemented in this project.

GLvoid KillGLWindow(GLvoid) // Properly Kill The Window
{
 if (fullscreen) // Are We In Fullscreen Mode?
 {
 ChangeDisplaySettings(NULL,0); // If So Switch Back To The Desktop
 ShowCursor(TRUE); // Show Mouse Pointer
 }

 if (hRC) // Do We Have A Rendering Context?
 {
 if (!wglMakeCurrent(NULL,NULL)) // Are We Able To Release The DC And RC Contexts?
 {
 MessageBox(NULL,"Release Of DC And RC Failed.","SHUTDOWN ERROR",MB_OK |
MB_ICONINFORMATION);
 }

 if (!wglDeleteContext(hRC)) // Are We Able To Delete The RC?
 {
 MessageBox(NULL,"Release Rendering Context Failed.","SHUTDOWN ERROR",MB_OK |
MB_ICONINFORMATION);
 }
 hRC=NULL; // Set RC To NULL
 }

 if (hDC && !ReleaseDC(hWnd,hDC)) // Are We Able To Release The DC
 {
 MessageBox(NULL,"Release Device Context Failed.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hDC=NULL; // Set DC To NULL
 }

 if (hWnd && !DestroyWindow(hWnd)) // Are We Able To Destroy The Window?
 {
 MessageBox(NULL,"Could Not Release hWnd.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hWnd=NULL; // Set hWnd To NULL
 }

 if (!UnregisterClass("OpenGL",hInstance)) // Are We Able To Unregister Class
 {
 MessageBox(NULL,"Could Not Unregister Class.","SHUTDOWN ERROR",MB_OK | MB_ICONINFORMATION);
 hInstance=NULL; // Set hInstance To NULL
 }
 KillFont();

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 21

}

/* This Code Creates Our OpenGL Window. Parameters Are: *
 * title - Title To Appear At The Top Of The Window *
 * width - Width Of The GL Window Or Fullscreen Mode *
 * height - Height Of The GL Window Or Fullscreen Mode *
 * bits - Number Of Bits To Use For Color (8/16/24/32) *
 * fullscreenflag - Use Fullscreen Mode (TRUE) Or Windowed Mode (FALSE) */

BOOL CreateGLWindow(char* title, int width, int height, int bits, bool fullscreenflag)
{
 GLuint PixelFormat; // Holds The Results After Searching For A Match
 WNDCLASS wc; // Windows Class Structure
 DWORD dwExStyle; // Window Extended Style
 DWORD dwStyle; // Window Style
 RECT WindowRect; // Grabs Rectangle Upper Left / Lower Right Values
 WindowRect.left=(long)0; // Set Left Value To 0
 WindowRect.right=(long)width; // Set Right Value To Requested Width
 WindowRect.top=(long)0; // Set Top Value To 0
 WindowRect.bottom=(long)height; // Set Bottom Value To Requested Height

 fullscreen=fullscreenflag; // Set The Global Fullscreen Flag

 hInstance = GetModuleHandle(NULL); // Grab An Instance For Our Window
 wc.style = CS_HREDRAW | CS_VREDRAW | CS_OWNDC; // Redraw On Size, And Own DC For
Window.
 wc.lpfnWndProc = (WNDPROC) WndProc; // WndProc Handles Messages
 wc.cbClsExtra = 0; // No Extra Window Data
 wc.cbWndExtra = 0; // No Extra Window Data
 wc.hInstance = hInstance; // Set The Instance
 wc.hIcon = LoadIcon(NULL, IDI_WINLOGO); // Load The Default Icon
 wc.hCursor = LoadCursor(NULL, IDC_ARROW); // Load The Arrow Pointer
 wc.hbrBackground = NULL; // No Background Required For GL
 wc.lpszMenuName = NULL; // We Don't Want A Menu
 wc.lpszClassName = "OpenGL"; // Set The Class Name

 if (!RegisterClass(&wc)) // Attempt To Register The Window Class
 {
 MessageBox(NULL,"Failed To Register The Window Class.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 if (fullscreen) // Attempt Fullscreen Mode?
 {
 DEVMODE dmScreenSettings; // Device Mode
 memset(&dmScreenSettings,0,sizeof(dmScreenSettings)); // Makes Sure Memory's Cleared
 dmScreenSettings.dmSize=sizeof(dmScreenSettings); // Size Of The Devmode Structure
 dmScreenSettings.dmPelsWidth = width; // Selected Screen Width
 dmScreenSettings.dmPelsHeight = height; // Selected Screen Height
 dmScreenSettings.dmBitsPerPel = bits; // Selected Bits Per Pixel
 dmScreenSettings.dmFields=DM_BITSPERPEL|DM_PELSWIDTH|DM_PELSHEIGHT;

 // Try To Set Selected Mode And Get Results. NOTE: CDS_FULLSCREEN Gets Rid Of Start Bar.
 if (ChangeDisplaySettings(&dmScreenSettings,CDS_FULLSCREEN)!=DISP_CHANGE_SUCCESSFUL)
 {
 // If The Mode Fails, Offer Two Options. Quit Or Use Windowed Mode.
 if (MessageBox(NULL,"The Requested Fullscreen Mode Is Not Supported By\nYour Video Card. Use
Windowed Mode Instead?","NeHe GL",MB_YESNO|MB_ICONEXCLAMATION)==IDYES)
 {
 fullscreen=FALSE; // Windowed Mode Selected. Fullscreen = FALSE
 }
 else
 {
 // Pop Up A Message Box Letting User Know The Program Is Closing.
 MessageBox(NULL,"Program Will Now Close.","ERROR",MB_OK|MB_ICONSTOP);
 return FALSE; // Return FALSE
 }
 }
 }

 if (fullscreen) // Are We Still In Fullscreen Mode?
 {
 dwExStyle=WS_EX_APPWINDOW; // Window Extended Style
 dwStyle=WS_POPUP; // Windows Style

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 22

 ShowCursor(FALSE); // Hide Mouse Pointer
 }
 else
 {
 dwExStyle=WS_EX_APPWINDOW | WS_EX_WINDOWEDGE; // Window Extended Style
 dwStyle=WS_OVERLAPPEDWINDOW; // Windows Style
 }

 AdjustWindowRectEx(&WindowRect, dwStyle, FALSE, dwExStyle); // Adjust Window To True Requested Size

 // Create The Window
 if (!(hWnd=CreateWindowEx(dwExStyle, // Extended Style For The Window
 "OpenGL", // Class Name
 title, // Window Title
 dwStyle | // Defined Window Style
 WS_CLIPSIBLINGS | // Required Window Style
 WS_CLIPCHILDREN, // Required Window Style
 0, 0, // Window Position
 WindowRect.right-WindowRect.left, // Calculate Window Width
 WindowRect.bottom-WindowRect.top, // Calculate Window Height
 NULL, // No Parent Window
 NULL, // No Menu
 hInstance, // Instance
 NULL))) // Dont Pass Anything To
WM_CREATE
 {
 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Window Creation Error.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 static PIXELFORMATDESCRIPTOR pfd= // pfd Tells Windows How We Want Things To Be
 {
 sizeof(PIXELFORMATDESCRIPTOR), // Size Of This Pixel Format Descriptor
 1, // Version Number
 PFD_DRAW_TO_WINDOW | // Format Must Support Window
 PFD_SUPPORT_OPENGL | // Format Must Support OpenGL
 PFD_DOUBLEBUFFER, // Must Support Double Buffering
 PFD_TYPE_RGBA, // Request An RGBA Format
 bits, // Select Our Color Depth
 0, 0, 0, 0, 0, 0, // Color Bits Ignored
 0, // No Alpha Buffer
 0, // Shift Bit Ignored
 0, // No Accumulation Buffer
 0, 0, 0, 0, // Accumulation Bits Ignored
 16, // 16Bit Z-Buffer (Depth Buffer)
 0, // No Stencil Buffer
 0, // No Auxiliary Buffer
 PFD_MAIN_PLANE, // Main Drawing Layer
 0, // Reserved
 0, 0, 0 // Layer Masks Ignored
 };

 if (!(hDC=GetDC(hWnd))) // Did We Get A Device Context?
 {
 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Can't Create A GL Device Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 if (!(PixelFormat=ChoosePixelFormat(hDC,&pfd))) // Did Windows Find A Matching Pixel Format?
 {
 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Can't Find A Suitable PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 if(!SetPixelFormat(hDC,PixelFormat,&pfd)) // Are We Able To Set The Pixel Format?
 {
 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Can't Set The PixelFormat.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 23

 if (!(hRC=wglCreateContext(hDC))) // Are We Able To Get A Rendering Context?
 {
 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Can't Create A GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 if(!wglMakeCurrent(hDC,hRC)) // Try To Activate The Rendering Context
 {
 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Can't Activate The GL Rendering Context.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 ShowWindow(hWnd,SW_SHOW); // Show The Window
 SetForegroundWindow(hWnd); // Slightly Higher Priority
 SetFocus(hWnd); // Sets Keyboard Focus To The Window
 ReSizeGLScene(width, height); // Set Up Our Perspective GL Screen

 if (!InitGL()) // Initialize Our Newly Created GL Window
 {
 KillGLWindow(); // Reset The Display
 MessageBox(NULL,"Initialization Failed.","ERROR",MB_OK|MB_ICONEXCLAMATION);
 return FALSE; // Return FALSE
 }

 return TRUE; // Success
}

LRESULT CALLBACK WndProc(HWND hWnd, // Handle For This Window
 UINT uMsg, // Message For This Window
 WPARAM wParam, // Additional Message Information
 LPARAM lParam) // Additional Message Information
{
 switch (uMsg) // Check For Windows Messages
 {
 case WM_ACTIVATE: // Watch For Window Activate Message
 {
 if (!HIWORD(wParam)) // Check Minimization State
 {
 active=TRUE; // Program Is Active
 }
 else
 {
 active=FALSE; // Program Is No Longer Active
 }

 return 0; // Return To The Message Loop
 }

 case WM_SYSCOMMAND: // Intercept System Commands
 {
 switch (wParam) // Check System Calls
 {
 case SC_SCREENSAVE: // Screensaver Trying To Start?
 case SC_MONITORPOWER: // Monitor Trying To Enter Powersave?
 return 0; // Prevent From Happening
 }
 break; // Exit
 }

 case WM_CLOSE: // Did We Receive A Close Message?
 {
 PostQuitMessage(0); // Send A Quit Message
 return 0; // Jump Back
 }

 case WM_KEYDOWN: // Is A Key Being Held Down?
 {
 keys[wParam] = TRUE; // If So, Mark It As TRUE
 return 0; // Jump Back
 }

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 24

 case WM_KEYUP: // Has A Key Been Released?
 {
 keys[wParam] = FALSE; // If So, Mark It As FALSE
 return 0; // Jump Back
 }

 case WM_SIZE: // Resize The OpenGL Window
 {
 ReSizeGLScene(LOWORD(lParam),HIWORD(lParam)); // LoWord=Width, HiWord=Height
 return 0; // Jump Back
 }
 }

 // Pass All Unhandled Messages To DefWindowProc
 return DefWindowProc(hWnd,uMsg,wParam,lParam);
}

int WINAPI WinMain(HINSTANCE hInstance, // Instance
 HINSTANCE hPrevInstance, // Previous Instance
 LPSTR lpCmdLine, // Command Line Parameters
 int nCmdShow) // Window Show State
{
 MSG msg; // Windows Message Structure
 BOOL done=FALSE; // Bool Variable To Exit Loop

 // Ask The User Which Screen Mode They Prefer
 //if (MessageBox(NULL,"Would You Like To Run In Fullscreen Mode?", "Start
FullScreen?",MB_YESNO|MB_ICONQUESTION)==IDNO)
 //{
 // fullscreen=FALSE; // Windowed Mode
 //}

 // Create Our OpenGL Window
 if (!CreateGLWindow("Room Acoustics",540,320,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }

 while(!done) // Loop That Runs While done=FALSE
 {
 if (PeekMessage(&msg,NULL,0,0,PM_REMOVE)) // Is There A Message Waiting?
 {
 if (msg.message==WM_QUIT) // Have We Received A Quit Message?
 {
 done=TRUE; // If So done=TRUE
 }
 else // If Not, Deal With Window Messages
 {
 TranslateMessage(&msg); // Translate The Message
 DispatchMessage(&msg); // Dispatch The Message
 }
 }
 else // If There Are No Messages
 {
 // Draw The Scene. Watch For ESC Key And Quit Messages From DrawGLScene()
 if (active) // Program Active?
 {
 if (keys[VK_ESCAPE]) // Was ESC Pressed?
 {
 done=TRUE; // ESC Signalled A Quit
 }
 else // Not Time To Quit, Update Screen
 {
 DrawGLScene(); // Draw The Scene
 SwapBuffers(hDC); // Swap Buffers (Double Buffering)
 }

 }

 if (keys[VK_F1]) // Is F1 Being Pressed?
 {
 keys[VK_F1]=FALSE; // If So Make Key FALSE
 KillGLWindow(); // Kill Our Current Window
 fullscreen=!fullscreen; // Toggle Fullscreen / Windowed Mode

Modelling of Wave Propagation by Implementing the Transmission Line Matrix in C++ 05-07-31
Room Acoustics #3 Tommy Hinks, MT3Y, tomhi761@student.liu.se
Supervisor: Stanley Miklavcic Johan Höglund, MT3Y, johho927@student.liu.se

 25

 // Recreate Our OpenGL Window (Modified)
 if (!CreateGLWindow("Room Acoustics",420,320,16,fullscreen))
 {
 return 0; // Quit If Window Was Not Created
 }
 }

 if (keys[VK_UP] && !bKeyUp)
 {
 r.setWallUp();
 }
 if (!keys[VK_UP]) bKeyUp=false;

 if (keys[VK_DOWN] && !bKeyDown)
 {
 r.setWallDown();
 }
 if (!keys[VK_DOWN]) bKeyDown=false;

 }
 }

 // Shutdown
 KillGLWindow(); // Kill The Window
 return (msg.wParam); // Exit The Program
}

